Évaluation de la faisabilité d'un réseau de camionnage lourd, partagé, en milieu urbain (CMM et CMQ)

Phase 1 et 2 : Revue des connaissances

Espace de logistique urbain partagé

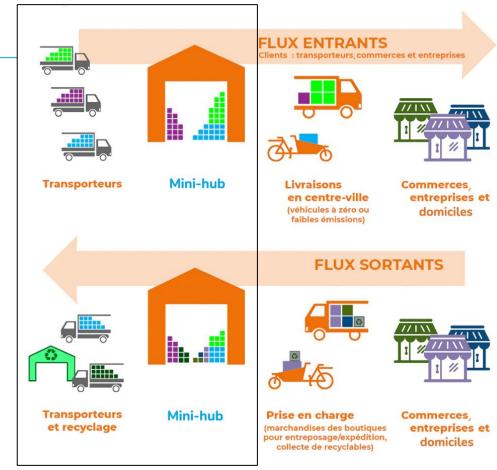
Solution de camionnage lourd électrique en milieu urbain

Avec la participation financière de :

Introduction

La Coop Carbone conduit une étude de faisabilité d'un réseau de camionnage lourd, partagé en milieu urbain à Montréal et Québec, avec le soutien financier du Gouvernement du Québec.

Le présent rapport intermédiaire fait la synthèse des connaissances issues de la littérature et de la collecte d'informations sur le terrain effectuée au 2e semestre 2021 auprès de parties prenantes et d'experts. Les analyses ne tiennent pas compte de la hausse rapide des prix du diesel observée début 2022.


Le rapport final comprendra des analyses de données de livraison et une modélisation des flux et des meilleurs emplacements d'espaces de logistique urbaine sur la CMM et CMQ. Sa publication est prévue pour H2 2022

Présentation de l'étude

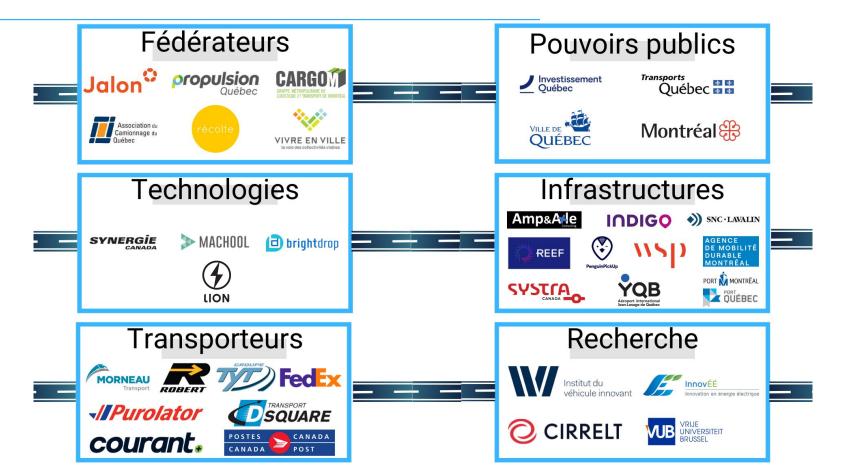
Étude sur l'implémentation d'espaces urbains partagés pour le transbordement de camions lourds électriques, au sein de la CMQ et CMM.

- Analyser et planifier la réalisation d'un projet collaboratif de <u>démonstration</u> de camions lourds électriques.
- Miser sur les cas d'usages et le potentiel d'électrification qu'offrent des <u>structures urbaines de</u> <u>transbordement de marchandises</u>, partagées, fixes et mobiles.

Source: Urby France

Méthodologie

L'étude consiste à analyser les trois thématiques suivantes selon cinq axes.


Thématique 1 : L'utilisation de camions lourds électriques en milieu urbain

Thématique 2 : L'utilisation d'espaces partagés

Thématique 3: Intégration des solutions en camionnage leurd et canace de transherdement

nematique 3: Integration des solutions en camionnage lourd et espace de transpordement							
Acteur	Brique 1 Préparation du cadre	Brique 2 Étude de l'opportunité	Brique 3 Analyse des exigences opérationnelles	Brique 4 Évaluation de faisabilité et étude d'impacts	Brique 5 Rédaction du livrable final		
Pratique Technologie Infrastructure Réglementation	 Revue de littérature État des connaissances Cartographie des parties prenantes (privées, publics) Définition des hypothèses du projet 	 Consultation des parties prenantes Compréhension des usages, besoins, coûts, spécificités techniques, obstacles, facteurs de succès Validation de la pertinence des hypothèses 	 Analyse des contraintes physiques, sécuritaires et réglementaires Définition de scénarios potentiels 	 Étude d'impacts des scénarios (GES) Validation des scénarios Création d'un plan de déploiement 	 Rédaction du livrable final Prochaines étapes du projet pilote 		

36 acteurs rencontrés

Principaux apprentissages

Technologies

Transporteurs

Pratiques

Les infrastructures logistiques urbaines, qui fonctionnent en projet pilote, démontrent des Infrastructures gains opérationnels et environnementaux substantiels. Il reste à travailler le cadre réglementaire et la mise à l'échelle.

> La technologie électrique prendra du temps pour percer et perturber le marché. Elle ne sera pas l'unique solution pour se substituer au diesel. Elle est présentement adaptée aux courtes et moyennes distances, mais l'incertitude liée à la longue distance est encore énorme.

> Les transporteurs longue distance désirent continuer le "business as usual" sur la conduite des opérations et sont attentistes par rapport aux nouvelles tendances de pratique et de technologies, malgré les incitatifs en place. Un manque de stratégie et de messages clairs des pouvoirs publics exacerbe cet attentisme.

Les **pratiques** de mutualisation, de collaboration et de partage **offrent des gains plus rapides et** plus importants pour l'environnement que les changements technologiques. Elles sont, par contre, négligées des acteurs de l'industrie et sont encore au stade de pilote.

Le cadre actuel compétitif, économique, réglementaire et technologique n'est pas propice à un changement structurel majeur <u>rapide</u> sans accompagnement, intervention et choc externe.

Espaces logistiques urbains

Les espaces logistiques urbains (ELU), qui fonctionnent en projet pilote, démontrent des gains opérationnels et environnementaux substantiels. Il reste à travailler le cadre réglementaire et la mise à l'échelle.

Espaces logistiques urbains

Plusieurs solutions selon les cas d'usage

La logistique à une échelle plus humaine, adaptée à l'usage et plus efficace

Centre de micro-consolidation

Il s'agit d'un petit CDU. Il permet le transfert et le groupage de marchandises entre différents types de véhicules, afin d'accéder aux zones urbaines.

Point de transbordement

Il s'agit d'un espace utilisé pour les transbordements de camions vers des véhicules adaptés au milieu urbain, sans consolidation.

Dépôt mobile

Il s'agit d'une remorque ou un conteneur utilisé comme base mobile en centre-ville, d'où les livraisons du dernier kilomètre sont effectuées à vélo-cargo.

Espace de livraison de proximité

Il consiste en des zones désignées de chargement/déchargement. Les camions sont autorisés à s'y stationner afin que les marchandises soient transportées sans émission sur de courtes distances.

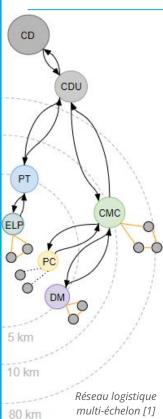
Point de collecte

Il permet au destinataire de réceptionner sa marchandise dans un lieu communal. Le dernier kilomètre est effectué par le destinataire.

KoMoDo, Berlin

TNT Express, Bruxelles

ELP, Rouen


Wall Car Park, Londres

1

Rouen Almere, Pays-Bas

Espaces logistiques urbains

Benchmark & Résultats tangibles

	Туре	Exemple	Lieu	Date	Opérateur	Dimension	Rayon	Capacité	Gain
	Centre de micro-consolidation	Last Mile Logistic Hub [2]	Londres, Angleterre	2020	Amazon	39 esp. de stationnement	2 km	N/D	1 hub = enlève 85 camions des routes / jours, avec ~50 vélos
0	Point de transbordement	KoMoDo [3]	Berlin, Allemagne	2018	DHL, DPD, Hermes, GLS, UPS	N/D	3 km	11 vélos / jour 160 000 colis / an	38 000 kms décarbonés (équivalent 11T CO2)
	Point de transbordement	Colibri [4]	Montréal, Canada	2019	Purolator, SOS Courrier, LVM	~5 000 pi2	3-5 km	10-12 vélos / jour 1 LSV 1000+ colis / jour	12 fois moins d'émissions de CO2 1 vélo-cargo = 1 van
	Point de transbordement	e-Cargo cycle pilot [5] [6]	Miami, US	2021	DHL et REEF	3 esp. de stationnement	3 km	4 vélos électriques / jour 46 arrêts/jour/vélo	Réduction de 101 tonnes de CO2 (estimé) sur l'année 1 vélo-cargo = 1 van
	Point de transb. <u>&</u> Point de collecte	ZE last-mile delivery hub [7]	Seattle, US	2021	Coaster Cycle, Brightdrop, AxleHire, REEF	N/D	N/D	N/D	Chaque vélo permet une réduction de 7 tonnes de CO2 / an (estimé)
	Dépôt mobile	Mobile depot [8]	Bruxelles, Belgique	2013	TNT Express	1 conteneur	N/D	Réduction de 61% des kms parcourus Légère réduction du niveau de service Coût 2x plus élevé, avec améliorations possibles	
	Espace de livraison de proximité	ELP Bordeaux [9]	Bordeaux, France	2003	La Poste	70 m ²	N/D	3 000 colis par mois	N/D
	Point de collecte	Pakketautomaten [10]	Almere, Pays-Bas	2015	PostNL et Inpost	N/D	3,5 km	Réduction de 67% des Augmentation jusqu'à	

Centre de micro-consolidation

Point de transbordement

Espace de livraison de proximité

Dépôt mobile

Livraison direct

Collecte par le client

Cadre réglementaire

Freins et leviers au déploiement des ELUs

Freins

- La réglementation municipale relègue souvent les usages de transport et logistiques dans les zones industrielles en périphérie.
- Les projets sont souvent acceptés temporairement par dérogation. Une modification pérenne du règlement de zonage demande du temps et de l'acceptabilité sociale.
- Les terrains situés dans les quartiers centraux demeurent coûteux, contingentés et peu adaptés.
- Les responsabilités et la prise de décision sont souvent confuses entre municipalités et arrondissements et disparates entre municipalités.

Leviers

- Collaboration et ouverture des municipalités (ex. : le cas du Plan d'urbanisme et mobilité de Montréal).
- Contextes d'implantation prônant l'expérimentation (projet-pilote, discrétionnaire).
- Réappropriation de l'espace public et de la bordure de rue.
- Innovation de la réglementation municipale dans le monde (zone zéro émission, créneau horaire, tarification, ...).

Considérations opérationnelles

Les ELUs ne sont pas une solution de type "one-size fits all".

Suite au projet de mini-hub à Montréal et aux autres projets évalués dans le monde, on constate que chaque projet est unique. La viabilité économique et l'impact dépendent de l'adaptation du site aux considérations opérationnelles.

La mise en oeuvre d'un projet pilote d'ELU doit prendre en considération les principaux paramètres suivants [11] :

Réglementation et incitatifs Réglementation (zone zéro-émission, créneau horaire, ...) Incitatifs à la livraison Infrastructure Infrastructures physiques (Adaptation à l'électrification, ...) Disposition des lieux

Mission

- Raison d'être du lieu (type d'usage, modèle de revenus)
- Type de biens (colis, alimentaire...)
- Modèle opérationnel des transporteurs
- Parties prenantes (gouvernance)

Localisation

- Accès, disponibilité et prix des terrains et bâtisses
- Zonage
- Localisation (densité, congestion, climat, relief, etc.)

l'espace

Quai de chargement

Coûts d'opération de

Considérations opérationnelles

La perception du public

L'acceptation sociale varie, mais reste positive pour les ELUs permettant une livraison durable. [12]

- **Londres**: projet d'ELU nécessitant peu d'incitatifs gouvernementaux en raison de la pression des consommateurs (bottom-up pressure). [13]
- Helsinki: projet de centre de micro-consolidation (CMC).
 Excellente réception sociale, devenant même un lieu de rassemblement pour la communauté. [14]
- Mechelen, Belgique, la réponse du public est favorable : 83% des résidents obtiennent leurs livraisons en se rendant à vélo ou à pied; Un représentant municipal mentionne : "Au début, nous avons dû défendre l'installation des casiers. Aujourd'hui, c'est l'inverse : des quartiers plus éloignés du centre-ville qui n'ont pas encore de casiers nous demandent d'en installer chez eux."

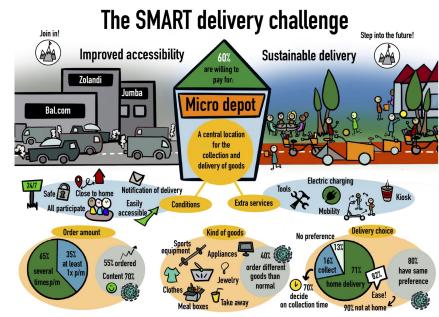


Illustration des résultats du sondage envoyé aux résidents de Helsinki pour le projet de CMC [14]

Colisactiv': incitatifs à l'utilisation

En France, prime à la décarbonisation de la livraison

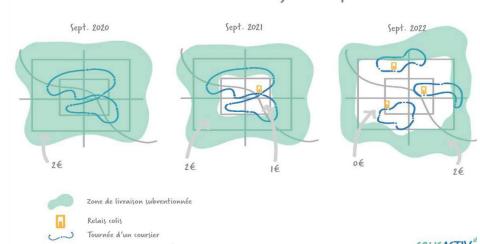
1

Pour chaque colis livré à vélo ou à pied, une prime est reversée à l'opérateur

de livraison.

2

L'opérateur de livraison peut donc proposer des tarifs compétitifs à ses clients.



3

Plus la livraison active est économiquement intéressante et plus elle va être utilisée, augmentant ainsi les volumes de colis confiés et la densité des tournées de livraison et donc sa compétitivité. Sources: [16] ColisActiv, 2022 4

La livraison active se développe au détriment de la livraison thermique et a de moins en moins besoin d'être aidée. Le niveau de prime diminue donc au fur et à mesure du programme.

Densité de livraison & Dégressivité par zones

Objectifs du programme

Réduire durablement le coût de la livraison active pour la rendre compétitive et attractive pour les transporteurs et chargeurs qui bénéficieront directement d'une réduction sur les factures de leurs entreprises de livraison par mode actif. Le dispositif vise ainsi à densifier les livraisons de colis par mode actif en incitant les transporteurs et chargeurs à orienter plus de colis vers ce mode de transport. La prime est dégressive dans le temps au fur et à mesure que les livraisons se densifient afin qu'à l'issu du programme, il n'y ait plus besoin d'aides complémentaires. [16]

Technologie de camion lourd électrique La technologie électrique prendra du temps pour percer et perturber le marché. Elle ne sera pas

La technologie électrique prendra du temps pour percer et perturber le marché. Elle ne sera pas l'unique solution pour se substituer au diesel. Elle est actuellement adaptée aux courtes et moyennes distances, mais l'incertitude liée à la longue distance est encore énorme.

Maturité du secteur

Général Catégorie		Cami	on lourd	Camion moyen		Camion léger	ľ
Classe 8a et 8b		a et 8b	3 à 7		1 et 2];	
	Poids	>14	>14 969 kg		4 536 à 14 969 kg		
	Туре		Factage				
		T001=0	Régional Longue distance	Camion MD (Classe 6-7)	Van (Classe 3-5)	Véhicule à basse vitesse (LSV)	
Exemple de	Manufacturier	Freightliner [19]	Volvo [20]	Peterbilt [21]	Ford [22]	Kargo & canEV [23]	
maturité	Lancement	2018	2020	2019	2019	2007	
	Opération	1,6 M km	Test hivernal et + de 20 VÉs test	+ de 30 VÉs test	Env. 3000 VÉs d'ici 2023	Homologation pour routes du Qc en 2018	
	Commercial	2022	2021	2020	2021	2013]
Specs	Autonomie	300 km		350 km	200 km	30 à 90 km	١
	Recharge	80% en 1,5 heures		80% en 1 heure	100% en 1,5 h	N/A	
	Poids brute 82 000 lbs		000 lbs	26k à 33k lbs	10 360 lbs	3 000 lbs] [\] \
	HP 500 Prix Environ 400 000 à		500	160 à 280	215	29	S
			000 à 600 000\$	N/A	60 000\$	40 000\$	

Plusieurs autres manufacturiers sont dans la course à l'électrification et veulent commercialiser un véhicule d'ici 2023. [24]

2021: 70 modèles, 24 manufacturiers

Sources: [17] NRC, 2009 [18] Wiginton et al., 2019

[19] <u>Freightliner, 2020</u> [20] <u>Volvo, 2020</u> [21] <u>Peterbilt, 2**15**</u> [22] <u>Ford, 2021</u> [23] <u>Kargo, 2021</u> [24] <u>CALSTART, 2020</u>

Des caractéristiques non-validées mais prometteuses

Impact environnemental & santé

Coût total de possession (CTP)

Selon une analyse de cycle de vie *well-to-wheel* sur 150 000 km de durée de vie au Québec [25], le VÉ permet de :

- 65% des GES équivalents,
- 29% de l'impact sur la santé humaine,
- 58% de l'impact sur les écosystèmes,
- 65% de l'épuisement des ressources fossiles,
- 7 à 12% des bruits émis (dB), [26]
- ♠ 25% de l'épuisement des ressources minérales.

Le VÉ a une autonomie estimée d'environ <u>400 kms</u> alors que le VCI a une autonomie d'environ <u>800-900 kms</u>.

Le temps de recharge des VCIs est de <u>quelques minutes</u>. Le temps de recharge des VÉs prend <u>quelques heures</u> pour atteindre 100% ou environ 1h pour 80% de recharge (même sur les bornes de recharge rapide).

Par contre, le transport de marchandises est majoritairement local et effectué sur de courtes distances.

Selon le NREL, le CTP du VÉB sera plus avantageux que le VCI et le VEPAC en 2025 en considérant le temps de recharge et la perte de capacité de chargement. [27]

- Réduction en raison de : Réduction de la maintenance (prévisionnel), augmentation de l'efficacité, coût de l'électricité vs Diesel
- Augmentation due à la fabrication & matériaux
- Incertitude sur le financement, la durabilité et la valeur de revente

Capacité de chargement (poids)

Une grande crainte des transporteurs est la perte de charge utile en raison du poids des batteries plus important. [28] Par contre, lorsqu'on compare les spécifications des camions Freightliner (Cascadia vs eCascadia), [19] on constate que :

- Le châssis est le même: 8008 kg
- Le moteur à combustion pèse : 998 kg
- Le système électrique pèse : 618 kg
- Les batteries pèsent : 1827 kg
- La différence est de 1447 kg ou 5% de la capacité de chargement

Sources: [25] <u>CIRAIG, 2016</u> [26] <u>Caprioli et al., 2021</u> [27] <u>Hunter et al., 2021</u> [28] <u>Delrieu, 2020</u>

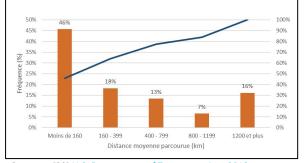
Prévision de la maturité technologique : Diesel vs Électrique

Catégorie		Maintenant	2025	2030	2035 et +
Poids	ids Capacité de chargement		VCI = VÉ		
Coût Initial				VCI = VÉ	
	Opération	VCI = VÉ			
	Valeur résiduelle			VCI = VÉ	
	Net		VCI = VÉ		
Maintenance	Services		VCI = VÉ		
Durée de vie	Durée de vie max. avant obsolescence	VCI = VÉ			
Autonomie	Distance moyenne journalière	VCI = VÉ			
Distance maximale journalière				VCI = VÉ	
Recharge	Temps de recharge				VCI = VÉ

Le camion diesel (VCI) est avantageux par rapport au VÉ

Le camion électrique (VÉ) est avantageux par rapport au diesel

Interurbain vs urbain : Des contraintes différentes


Les camions opérant sur de longues distances (interurbain, nationaux) n'ont pas les mêmes contraintes que les camions opérant en contexte urbain sur de courtes distances.

- La technologie de batteries électriques est mature pour l'utilisation en milieu urbain.
- Il reste plusieurs hypothèses à valider pour le camion longue distance (ex : charge, autonomie, recharge, etc.).

Distance moyenne

46% des camions lourds parcourent moins de 160 km par jour. [30]

La majorité des camions électriques offrent cette autonomie **aujourd'hui** (moyenne de 350 km).

Retour au dépôt

La majorité des camions lourds retournent à leur dépôt tous les jours.

La faible couverture du réseau de recharge actuel n'est ainsi pas un enjeu.

La recharge, plus longue pour le VÉ, peut être effectuée pendant la nuit.

Les cas extrêmes

Pour les très courtes distances, celles de plus de 400 km (environ ½ des déplacements) ou pour des charges de plus de 80 000 lbs, des alternatives sont disponibles :

- utiliser d'autres technologies (ex : vélo-cargo, hydrogène, GNR);
- adapter les opérations aux caractéristiques du camion à batteries électriques;
- valider les capacités par des tests terrain et adapter la technologie électrique.

Sources: [30] <u>U.S. Department of Transportation, 2013</u>

Les véhicules alternatifs

Le camion électrique à pile combustible (VÉPAC ou Hydrogène)

Le camion hydrogène **permet** de [31] :

- parcourir de longues distances et de se recharger rapidement,
- supporter des charges lourdes,
- poursuivre les opérations sans modification majeure pour les transporteurs.

La **maturité** du secteur est au stade de :

- quelques projets pilotes dans le monde (2 camions au Canada, 18 aux É-U),
- une production de masse devrait débuter vers 2025.
 - Hyundai prévoit produire 1 600 classe 8 H₂ d'ici 2025 en UE.
 - o Nikola prévoit produire 14 000 camions et 700 stations d'ici 2028 aux É-U et Canada.

Les **freins** potentiels liés à son déploiement sont :

- un faible taux de H₂ vert (même au Qc, seulement 0,1% de l'H₂ est verte),
- des infrastructures de recharge quasi inexistantes (2 stations au Québec),
- un coût d'acquisition élevé et le coût de l'hydrogène vert reste élevé,
 - En avril 2020, aux É.-U., le coût équivalent d'un gallon de diesel était de 0,64\$ pour le diesel, 0,78\$ pour l'électricité et 5,33\$ pour l'H₂, soit 6,5x plus dispendieux).
- le rendement de l'électrolyse reste faible et implique une perte significative d'énergie électrique.
 - L'ajout des opérations d'électrolyse, compression, liquéfaction, génération électrique par rapport au VÉ réduit l'efficacité du véhicule à l'hydrogène.
 - Il possède une efficacité d'environ 30% contrairement à 76% pour le VBÉ.

Specs [32]

Échelle de prix: 341 000 \$ (estimé de Nikola)

 $\pmb{\textbf{Autonomie}:1450\ km\ (\text{similaire au diesel})}$

Temps de recharge : 15 à 20 min (similaire au diesel)

Poids brute: 36 tonnes (env. 80 000 lbs)

HP: 645 HP (Diesel: 350 à 600 HP)

19

Les véhicules alternatifs

Le vélo-cargo utilitaire

Le vélo-cargo **permet** de :

- livrer les colis en milieu dense aussi rapidement que le VCI (selon les résultats du projet Colibri, été comme hiver), [33]
- réduire l'empreinte environnementale et l'impact social du dernier kilomètre.

La **maturité** du secteur est au stade de :

- faible maturité pour le secteur <u>manufacturier</u> en Amérique du Nord et particulièrement au Québec;
- demande à la hausse, avec des ventes évaluées à 3 400 unités / an, au Canada à partir de 2025. [34]

Les **freins** potentiels liés à son déploiement sont :

- l'approvisionnement difficile en vélo et pièces (peut-être circonstanciel et temporaire),
- le cadre réglementaire non standard (accès aux pistes cyclables, trottoirs, immatriculations et permis de conduire),
- l'état des routes et des pistes cyclables,
- les coûts d'achat, d'opérations et de maintenance en climat nordique (CTP toujours à valider).

Specs [34]

Échelle de prix : 5 847 à 8 806\$ **Capacité d'emport** : 150 à 500 kg

Poids du vélo: 25 à 150 kg

Dimension: Longueur 2 à 3 mètres,

Largeur 0.5 à 1,5 mètres,

Hauteur 70 à 110 cm

Type: bi-porteur, tri-porteur et remorque

Volume des cargos : 0,2 à 1,7m³ (200 à 1700L)

Les camions électriques

Freins et leviers à l'électrification des transports

Freins

- Les nouvelles tendances engendrent une **peur du changement**. Les entreprises de transport sont prêtes à un changement "un-pour-un".
- Il y a un **manque d'éducation** des acteurs sur les caractéristiques réelles des nouvelles technologies.
- La technologie électrique est relativement nouvelle et nécessite des validations terrain de grande envergure.
- Il existe une incertitude sur la **gestion de fin de vie** des VÉs.
- Les méthodes de **financement** d'un VÉ sont toujours incertaines - liées à un manque de données de valeur à la revente.
- Le **réseau** d'infrastructures de recharge rapide reste encore peu développé et la recharge est longue.

Leviers

- Il y a une **pression** gouvernementale et publique croissante.
- Les **détaillants** s'intègrent de plus en plus dans les projets (ex : Walmart).
- La technologie est **validée** sur de petits projets pilotes (ex: projet de IVI et projet Run on Less du NACFE).
- Plusieurs technologies sont développées pour plusieurs cas d'usage. Il reste à sélectionner la plus adaptée au cas.
- Il reste une place importante à accorder à l' éducation sur les méthodes de **Réduction** dans une approche systémique **R**TA.

Transporteurs attentistes

Les transporteurs longue distance désirent continuer le "business as usual" sur la conduite des opérations et sont attentistes par rapport aux nouvelles tendances en termes de pratiques et de technologies, malgré les incitatifs en place.

État des lieux : Camionnage au Québec

Du transport local, sur de courtes distances et à vide

Une forte proportion du transport est local [35] :

- 42% du transport en provenance de Montréal reste dans la CMM;
- 36% du transport en provenance de Québec reste dans la CMQ.

Les distances moyennes parcourues sont courtes [36] :

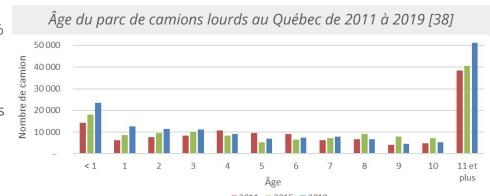
- 44% des entreprises agissent dans un rayon d'action de 160 kms;
- la distance moyenne parcourue est de 166 kms.

Flux du commerce intérieur, 2012 [37]

Répartition du transport selon la capacité [36]

La capacité de chargement des camion est sous-utilisée [36] :

- plus d'un camion sur 3 circule à vide;
- les déplacements pleins le sont surtout en termes de volume (72,4%), moins en termes de tonnage (24%). Le poids de la batterie n'est donc pas un frein.


Il s'agit ainsi de **conditions propices à des changements de pratiques et à l' électrification**.

État des lieux : Camionnage au Québec

Longue durée de vie, investissement long terme

Portrait statistique

- Au Québec, 37% des camions ont moins de 3 ans et 32% ont 11 ans ou plus. [38]
- En Amérique du Nord, l'âge moyen des camions lourds est de 14,7 ans. [39]
- Il y a plus de 2 millions de véhicules lourds sur les routes du Canada et ce nombre augmente en moyenne d'environ 2 % par année. Les véhicules parcourent également plus de kilomètres au total. [40]

Utilisation

• De manière générale, les camions sont utilisés par des transporteurs longues distances en début de vie. Ils sont utilisés sur de courtes distances en fin de vie (dans leur troisième phase de vie, généralement après 1,8 millions de kms ou 10 ans). [41]

Tenir compte de la réalité opérationnelle dans nos décisions :

- L'utilisation des camions est en opposition avec la maturité technologique (c.-à.-d., les camions électriques sont adaptés aux courtes distances).
- Les camions en milieu urbain sont généralement en fin de vie.
- Les entreprises de transport considèrent l'investissement sur un horizon de 15 ans+. Il faut s'assurer de la pérennité de l'investissement (financement longue durée, maintenance sur le long terme, valeur de revente, etc.).
- En considérant un scénario où les dernières ventes de camions diesel sont en 2035, l'électrification complète du parc routier québécois se fera entre 2050 et 2060.

Sources: [38] SAAO, 2019 [39] Fleet Owner, 2014 [40] ECCC, 2021 [41] Frost et Sullivan, 2019

Incitatifs

Points de vue du camionneur

Les incitatifs gouvernementaux ne convainquent pas encore les transporteurs. [42][43]

Ils ne sont pas équivalents aux coûts du VCI et les transporteurs ne sont pas prêts à faire des hypothèses optimistes.

Pour un véhicule à combustion interne, les entreprises de transport considèrent que :

- le coût d'achat est d'environ 150 000\$,
- il est amorti sur 15 à 25 ans, ou,
- il possède 2 à 3 vies utiles sur le marché de l'occasion.

Pour un véhicule à batterie électrique, les entreprises de transport considèrent que :

- le coût d'achat est estimé varier entre 350 000\$ et 600 000\$,
- la somme des subventions est d'environ 150 000\$,
- il y a un manque d'informations pour effectuer une analyse financière du ROI et TCO.

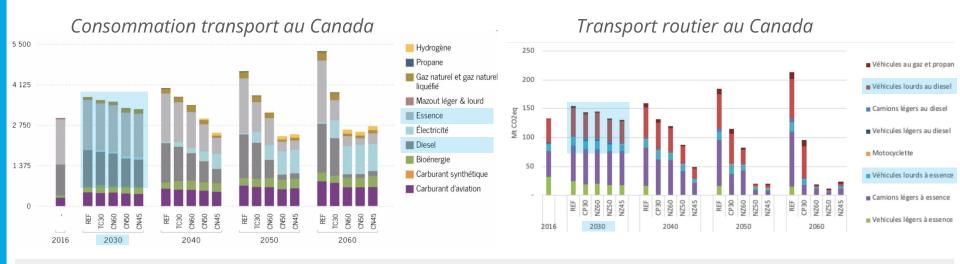
Les entreprises ont des <u>craintes</u> par rapport à :

- la durée de vie utile des VÉs,
- la valeur résiduelle et la gestion de fin de vie,
- les coûts réels de maintenance,
- la capacité des entreprises manufacturières à offrir un service rapide et pérenne,
- le dwell time (temps de recharge, autonomie)

Bref, sur un horizon de 15 à 25 ans, quel est le meilleur investissement?

Il faut accompagner les entreprises de transport dans la réflexion, l'éducation et la validation terrain de cette question.

Sources : [42] Entrevue 08, 2021 [43] Entrevue 16, 2021



Pratiques

Les pratiques de mutualisation, de collaboration et de partage offrent des gains plus rapides et plus importants pour l'environnement que les changements technologiques. Elles sont, par contre, négligées des acteurs de l'industrie et sont encore au stade de pilote.

Transport lourd : difficile et lent à décarboner

Les pratiques impacteront plus rapidement que les technologies

Peu importe les scénarios (référence-REF, taxe carbone 2030-TC, carboneutre 2045-50-60-CN), et même avec l'électrification agressive des véhicules, **l'industrie du transport lourd ne sera pas électrifiée avant 2040-2050**.

Les changements de pratiques sont donc primordiaux pour atteindre les cibles de réduction de GES.

Le partage de flottes

Un moyen de mitiger les risques est de <u>réduire</u> le nombre de camions

De plus en plus d'entreprises se tournent vers l'option de sous-traitance pour son transport. Une option est le *Fleet-as-a-Service*. Il s'agit de :

- louer une flotte de camions zéro-émission selon ses besoins, et,
- la location peut inclure la maintenance, le chauffeur, la gestion de la recharge et les systèmes de gestion.

Les avantages de cette pratique sont de :

- réduire le capital initial à investir,
- réduire le risque,
- utiliser le véhicule approprié pour le cas d'usage,
- favoriser une éducation et transition graduelle pour les transporteurs.

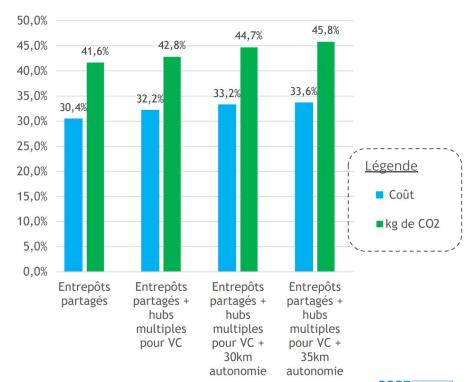
IKEA est un exemple de cette approche. Ils :

- se sont associés à Fluid Truck;
- assument les investissements initiaux pour les transporteurs; et,
- les fournisseurs d'IKEA utilisent des VÉs détenus et gérés par Fluid Truck pour effectuer des livraisons à domicile dans la région métropolitaine de New York et New Jersey.

Le potentiel de la collaboration

Des gains majeurs par l'utilisation d'entrepôts partagés

Lorsque les **entreprises collaborent et utilisent un mini-hub partagé**, la réduction des coûts et de l'empreinte environnementale est majeure. Les gains peuvent être améliorés par l'utilisation de vélo-cargo (VC).

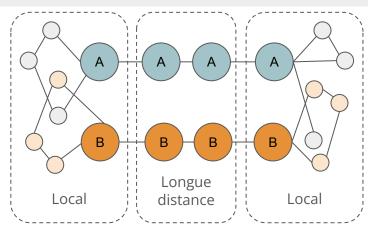

- Plus de 30% de réduction des coûts
- Près de 42% de réduction des GES

Contexte géographique: Grand Montréal

Levier: Consolidation (réduire le transport à vide)

Résultats similaires pour des études en Angleterre, à Singapour et en Espagne

Économies de coûts et de GES par scénario



Le potentiel de la mutualisation

Complexe, peu évaluée, mais des gains majeurs sur les coûts et les émissions

Approche hub-and-spoke

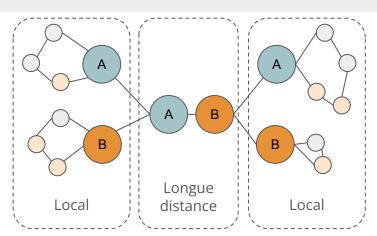
Approche moderne et optimisée [47]

Avantages:

- Gestion centralisée
- Contrôle de la chaîne

Inconvénient:

Longues distances parcourues


<u>Légende</u> Client entreprise A et B

Hub entreprise A et B

Approche de mutualisation

Réseau partagé (pooling) [48]

Avantages:

- Spécialisation possible
- Gains opérationnels : distance et coût

Inconvénients:

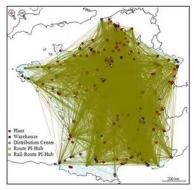
- Complexe à opérer (flux d'informations et physique)
- Partage des gains difficile à redistribuer
- Partage d'informations sensibles ou confidentielles

Sources: [47] Rodrigue, 2020 [48] Morana et al., 2014

L'internet physique

Une approche théorique à fort potentiel

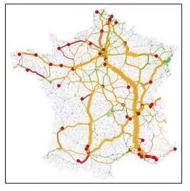
L'internet physique (IP) **consiste** de [44] :


- standardiser la taille des colis,
- utiliser plusieurs hubs,
- collaborer entre plusieurs entreprises,
- optimiser les mouvements sur l'ensemble d'un réseau ouvert,
- et ce, afin de maximiser l'utilisation de la capacité et minimiser la distance totale parcourue.

Cette approche **permet** de :

- réduire les kilomètres à vide,
- augmenter le taux de remplissage des camions,
- réduire les distances parcourues.

Dans une simulation réalisée en France sur les données réelles de deux entreprises majeures de distribution, cette approche permet de [45]:


- réduire de 20% les distances parcourues,
- réduire de 26% les coûts de transport,
- réduire de 67% les GES émis avec une approche multimodale.

Flux logistiques actuels

Flux logistiques d'un réseau de type Internet Physique

Trafic dans un réseau de type Internet Physique

Conclusion

Principaux apprentissages et recommandations

01	Infrastructures	Les infrastructures logistiques urbaines , qui fonctionnent en projet pilote , démontrent des gains opérationnels et environnementaux substantiels.	Mettre à l'échelle les projets d'ELU. Travailler avec les instances publiques pour obtenir un cadre réglementaire favorable et homogène.
02	Technologies	La technologie électrique prendra du temps pour percer et perturber le marché. Elle ne sera pas l'unique solution pour se substituer au diesel.	Favoriser un changement de pratiques et miser d'abord sur une <u>réduction</u> du nombre de camions (<u>R</u> TA). Accompagner les entreprises dans les choix et les couplages technologiques les plus appropriés par rapport à leurs usages et apprendre à les intégrer dans leurs opérations.
03	Transporteurs	Les transporteurs longue distance désirent continuer le "business as usual" sur la conduite des opérations et sont attentistes par rapport aux nouvelles tendances . Un manque de stratégie et de messages clairs des pouvoirs publics exacerbe cet attentisme.	Accompagner les entreprises de transport dans la réflexion, l'éducation et la validation terrain d'envergure afin qu'ils s'approprient les solutions dans un modèle économique viable au sein d'une stratégie claire des pouvoirs publics.
04	Pratiques	Les pratiques de mutualisation, de partage et de collaboration offrent des gains plus rapides et plus importants que les changements technologiques.	Démontrer concrètement l'impact de projets collaboratifs et prévoir l'intégration des diverses solutions dans un réseau distribué. Promouvoir l'interopérabilité des systèmes de gestion. Dérisquer les enjeux juridiques et économiques de la mutualisation.

Le cadre actuel compétitif, économique, réglementaire et technologique n'est pas propice à un changement structurel majeur rapide sans accompagnement, intervention et choc externe.

Prochaines étapes

L'étude consiste à analyser les trois thématiques suivantes selon cinq axes.

Thématique 1 : L'utilisation de camions lourds électriques en milieu urbain

Thématique 2 : L'utilisation d'espaces partagés

Thématique 3 : Intégration des solutions en camionnage lourd et espace de transbordement

Acteur	Brique 1 Préparation du cadre	Brique 2 Étude de l'opportunité	Brique 3 Analyse des exigences opérationnelles	Brique 4 Évaluation de faisabilité et étude d'impacts	Brique 5 Rédaction du livrable final
Pratique Technologie Infrastructure	 Revue de littérature État des connaissances Cartographie des parties prenantes (privées, publics) Définition des 	 Consultation des parties prenantes Compréhension des usages, besoins, coûts, spécificités techniques, 	 Analyse des contraintes physiques, sécuritaires et réglementaires Définition de scénarios potentiels 	 Étude d'impacts des scénarios (GES) Validation des scénarios Création d'un plan de déploiement 	 Rédaction du livrable final Prochaines étapes du projet pilote
Réglementation	hypothèses du	obstacles, facteurs de succès Validation de la pertinence des hypothèses			

Spécificité territoriale

Des scénarios à adapter en fonction du contexte territorial

Densité de population	890 personnes / km² [46]	235 personnes / km² [47]
Nombre d'envois estimés en 2017 [48]	1 900 000	856 000
Présence d'espace logistique urbain partagé	Oui (adapté au vélo-cargo)	Non
Maturité des acteurs de cyclologistique	Élevé	Faible (Peu d'offre décarbonée)
Maturité du secteur de la recherche et de l'expérimentation	Actif (Parmi les leader Nord-Américain)	Chaire de recherche du Canada en logistique intégrée
Multimodalité	Infrastructure portuaire pour la marchandise	Infrastructure portuaire majoritairement pour le vrac
Climat [49]	Climat hivernal et précipitation de neige (1,9 m de neige)	Climat rigoureux (2 à 3°C inférieur à Montréal) et précipitation abondante (2,7 m de neige)

Merci

Simon Delisle

Chargé de projets, mobilité durable

Benjamin Dupont

Chargé de projet, mobilité durable

Caroline Marie

Conseillère stratégique, mobilité durable C 438 932-2276 cmarie@coopcarbone.coop

Yves Sagnières

Directeur, mobilité durable 514 573-2248 ysagnieres@coopcarbone.coop

Abbréviation

Localisation

CMM: Communauté Métropolitaine de Montréal

CMQ: Communauté Métropolitaine de Québec

Qc: Québec

É-U: États-Unis

UE: Union européenne

Type d'espaces logistiques

ELU: Espace de logistique urbaine (ULC en anglais)

CD: Centre de distribution

CDU: Centre de distribution urbain CMC: Centre de micro-consolidation

PT : Point de transbordement

DM: Dépôt mobile

ELP: Espace de livraison de proximité

PC: Point de collecte

Pratique

IP: Internet physique

Type de véhicules

VÉ: Véhicule électrique (EV en anglais)

VÉB: Véhicule électrique à batterie (BEV en anglais)

VÉPAC : Véhicule électrique à pile à combustible H₂ (FCEV en anglais)

H₂: Hydrogène

VCI: Véhicule à combustion interne (ICE en anglais)

GNR: Gaz naturel renouvelable

VC: Vélo-cargo

Quantification de l'impact

GES: Gaz à effet de serre

CTP: Coût total de possession (TCO en anglais)

ROI: Retour sur investissement ("return on investment", en anglais)

Association et organisme

NREL: National Renewable Energy Laboratory

IVI : Institut du Véhicule Innovant

NACFE: North American Council for Freight Efficiency

- [1] Janjevic, M., Marchàn, D., Winkenbach, M. (2020). Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations. European Journal of Operational Research, Vol. 294, pp. 1059-1077.
- [2] Freeman, O. (2021). London's Last Mile Logistic Hub For Sustainable Practices. Supply Chain Digital. En ligne. https://supplychaindigital.com/logistics-1/londons-last-mile-logistic-hub-sustainable-practices
- [3] DPD. (2019). KoMoDo: operations at micro-depot in Berlin shared by different service providers to be continued. DPD. En ligne. https://www.dpd.com/de/en/2019/05/24/komodo-anbieterneutrales-mikrodepot-in-berlin-geht-in-die-verlaengerung/
- [4] Entrevue 01. (2021). Entrevue anonymisée réalisée le 23 juin 2021.
- [5] Entrevue 23. (2021). Entrevue anonymisée réalisée le 30 novembre 2021.
- [6] DHL. (2020). DHL and REEF technology launch pilot to use ecofriendly cargo bikes for deliveries in downtown miami. DHL. En ligne. https://www.dhl.com/us-en/home/press/press-archive/2020/dhl-and-reef-technology-launch-pilot-to-use-ecofriendly-cargo-bikes-for-deliveries-in-downtown-miami.html
- [7] Schubert, C. (2021). Experimental zero-emissions last-mile delivery hub launches in Seattle as a test for urban logistics. Geekwire. En ligne. https://www.geekwire.com/2021/experimental-zero-emissions-last-mile-delivery-hub-launches-seattle-test-urban-logistics/
- [8] Verlinde, S., Macharis, C., Milan, L. et Kin, B. (2014). Does a mobile depot make urban deliveries faster, more sustainable and more economically viable: results of a pilot test in Brussels. Transportation Research Procedia, Vol. 4, pp. 361-373.
- [9] LAET (Laboratoire Aménagement Économie Transport). (2018). L'espace logistique de proximité de Bordeaux. En ligne. http://tmv.laet.science/formation/BordeauxELP.html
- [10] van Amstel, Y. (2018). Urban parcel delivery using lockers: Making last mile delivery more sustainable and cost efficient by using parcel lockers. Delft University of Technology. Master thesis. En ligne. http://resolver.tudelft.nl/uuid:8d739e31-1c9b-405d-a6b7-af171e04acd3

- [11] Merchàn, D. et Blanco, E. 2015. The Near Future of Megacity Logistics: Overview of Best-Practices, Innovative Strategies and Technology Trends for Last-Mile Delivery. MIT Center for Transportation & Logistics. En ligne. DOI:10.13140/RG.2.2.28441.42083
- [12] CycleLogistics. (2020). A Guide to Planning Cyclelogistics Hubs. En ligne. https://cyclelogistics.eu/sites/default/files/downloads/Cyclelogistics%20Hub%20Guide%20A5%20English.pdf
- [13] Janjevic, M., Kaminsky, P. et Ndiaye, A.B. (2013). Downscaling the consolidation of goods state of the art and transferability of micro-consolidation initiatives. European Transport, Vol. 54. En ligne. https://kaminsky.ieor.berkeley.edu/Reprints/MJ PK ABN 13.pdf
- [14] Rosenberg, L.N., Balouka, N., Herer, Y.T., Dani, E., Gasparin, P., Dobers, K., Rüdiger, D., Pete Pättiniemi, P., Portheine, P., van Uden, S. (2021). Introducing the Shared Micro-Depot Network for Last-Mile Logistics. Sustainability, Vol. 13. En ligne. https://doi.org/10.3390/su13042067
- [15] Eurocities. (2022). Put on your slippers: zero-emission deliveries are here. En ligne. https://eurocities.eu/latest/put-on-your-slippers-zero-emission-deliveries-are-here/
- [16] ColisActiv. (2022). Le programme au service du développement de la cyclologistique. En ligne. https://colisactiv.city/
- [17] National Resource Canada (NRC). (2009). Canadian Vehicle Survey (2009). En ligne. http://oee.nrcan.gc.ca/Publications/statistics/cvs05/pdf/cvs05.pdf
- [18] Wiginton, L., Smith, C., Ewing, M. et Battista, G. (2019). Fuel Savings and Emissions Reductions in Heavy-Duty Trucking: A blueprint for further action in Canada. The Pembina Institute.
- [19] Freightliner. (2020). Freightliner eM2 sell sheet. En ligne. https://adsal.dtnaapps.com/AssetLibrary/4318-freightliner em2 sell sheet-2020-06-02.pdf
- [20] Volvo. (2020). NFI begins piloting Volvo VNR Electric heavy-duty trucks in Southern California. En ligne. https://www.volvogroup.com/en-en/news/2020/sep/news-3776530.html

- [21] Peterbilt. (2021). Electric Vehicles. En ligne. https://www.peterbilt.com/electric-vehicles
- [22] Ford. (2021). 2022 E-TRANSIT. En ligne. https://www.ford.com/commercial-trucks/e-transit/
- [23] Kargo. (2021). En ligne. http://kargo-ev.com/home/
- [24] CALSTART. (2020). Drive to Zero's Zero-emission Technology Inventory (ZETI) Tool Version 5.9. En ligne. https://globaldrivetozero.org/tools/zero-emission-technology-inventory/
- [25] CIRAIG. (2016). Analyse du cycle de vie comparative des impacts environnementaux potentiels du véhicule électrique et du véhicule conventionnel dans un contexte d'utilisation québécois En ligne. https://ciraig.org/index.php/fr/lca-study/comparaison-des-vehicules-electriques-et-des-vehicules-conventionnels-en-contexte-quebecois/
- [26] Caprioli, D., Ferrali, L. et Cardillo, M. (2021). Battery Electric Vehicles What is the Future for the NVH Package? Autoneum R&D Report. En ligne. https://www.autoneum.com/wp-content/uploads/2018/10/Automotive-Acoustics What-is-the-future-for-the-NVH-package.pdf
- [27] Hunter, C., Penev, M., Reznicek, E., Lustbader, J., Birky, A. et Zhang, C. (2021). Breakthrough Analysis Finds Electrified Heavy-Duty Vehicle Powertrains Could Provide Lower Total Cost of Ownership. National Renewable Energy Laboratory (NREL). En ligne. https://www.nrel.gov/news/program/2021/breakthrough-analysis-finds-electrified-heavy-duty-powertrains-could-provide-lower-total-cost-ownership.html
- [28] Delrieu, F. (2020). Electrification des véhicules lourds: Présentation du projet AZETEC. En ligne. https://innov-ee.ca/wp-content/uploads/2021/01/Presentation-RDV-H2-mobilite-Nordresa-projet-Azetec-Frederic-Delrieu.pdf
- [29] NACFE. (2018). Medium-duty electric trucks: cost of ownership. En ligne. https://nacfe.org/emerging-technology/medium-duty-electric-trucks-cost-of-ownership/
- [30] U.S Department of Transportation. (2013). Freight Facts and Figures 2013, Table. En ligne. https://ops.fhwa.dot.gov/freight/freight analysis/nat freight stats/docs/13factsfigures/pdfs/fff2013 highres.pdf

- [31] Jalon. (2021). Rapport final du projet Colibri. Version pas encore publiée.
- [32] Deloitte. (2021). Étude de marché: Filière locale de vélos-cargos adaptés aux besoins de la cyclo-logistique québécoise.
- [33] Bonaldi, A. (2021). L'hydrogène pour le transport longue distance de marchandises au Québec. Sia Partners, Novembre 2021. En ligne. https://www.sia-partners.com/fr/actualites-et-publications/de-nos-experts/lhydrogene-pour-le-transport-longue-distance-de
- [34] Nikola. (2021). Two FCEV: A high-efficiency hydrogen fuel cell sleeper designed for long-haul applications. En ligne. https://nikolamotor.com/two-fcev
- [35] Statistique Canada. Statistique Canada. (2016). Tableau 36-10-0455-01 Estimations expérimentales des flux du commerce intérieur au sein des grandes régions économiques et entre celles-ci (x 1 000 000). En ligne. https://doi.org/10.25318/3610045501-fra
- [36] Ministère des Transports du Québec (MTQ). (2018). Portrait statistique et économique : Le camionnage au Québec. En ligne. https://www.transports.gouv.qc.ca/fr/entreprises-partenaires/ent-camionnage/statistiques/Documents/portrait-statistique.pdf
- [37] Statistique Canada. (2016). Infographies: Visualiser les flux du commerce intérieur régional au Canada. https://www150.statcan.gc.ca/n1/pub/11-627-m/2016005/m-c03-fra.htm
- [38] Société de l'assurance automobile du Québec (SAAQ). (2019). Nombre de véhicules en circulation selon le type d'utilisation, le type de véhicule et l'âge du véhicule, Québec et régions administratives. En ligne. https://bdso.gouv.qc.ca/pls/ken/ken213 afich tabl.page tabl?p iden tran=REPERJA6WV6166536384148d06kR&p lang=1&p m o=SAAQ&p id ss domn=718&p id raprt=3372#tri age=1&tri tertr=0
- [39] Fleet Owner. (2014). IHS: Both fleet age and truck demand on the rise. En ligne. https://www.fleetowner.com/research/article/21689245/ihs-both-fleet-age-and-truck-demand-on-the-rise
- [40] Environnement et Changement climatique Canada (ECCC). (2021). Document de discussion sur les véhicules lourds et leurs moteurs au Canada: transition vers un avenir sans émissions. En ligne. <a href="https://www.canada.ca/content/dam/eccc/documents/pdf/lcpe/21199_https://www.canada.ca/content/dam/eccc/documents/p

- [41] Frost et Sullivan. (2018). Life Cycle and TCO Analysis of Class-8 Trucks in North America, 2018–2032. En ligne. https://www.researchandmarkets.com/reports/4833127/life-cycle-and-tco-analysis-of-class-8-trucks-in
- [42] Entrevue 08. (2021). Entrevue anonymisée réalisée le 17 juin 2021.
- [43] Entrevue 16. (2021). Entrevue anonymisée réalisée le 16 septembre 2021.
- [44] Langlois-Bertrand, S., Vaillancourt, K., Beaumier, L., Pied, M., Bahn, O., Mousseau, N. (2021). Perspectives énergétiques canadiennes 2021 Horizon 2060, avec la contribution de Baggio, G., Joanis, M., Stringer, T. Institut de l'énergie Trottier et Pôle e3c. En ligne. https://iet.polymtl.ca/wp-content/uploads/delightful-downloads/PEC2021 20211109-1.pdf
- [45] Rickenbacker, H. (2021). IKEA tests new model for accelerating electric delivery. Greenbiz. En ligne. https://www.greenbiz.com/article/ikea-tests-new-model-accelerating-electric-delivery
- [46] Sarrazin, F. (2021). Potential of electric bicycle deliveries in the Montreal region, avec la contribution de Bernard Gendron et Martin Trépanier. CORS Conference, Juillet 2021.[41] Rodrigue, J.-P. (2020). The Geography of Transport Systems. Routledge. En ligne. https://www.routledge.com/The-Geography-of-Transport-Systems/Rodrigue/p/book/9780367364632
- [47] Rodrigue, J.-P. (2020). The Geography of Transport Systems. Routledge. En ligne. https://www.routledge.com/The-Geography-of-Transport-Systems/Rodrigue/p/book/9780367364632
- [48] Morana, J., Gonzalez-Feliu, J. et Semet, F. (2014). Urban Consolidation and Logistics Pooling. Springer. En ligne. https://doi.org/10.1007/978-3-642-31788-0_10
- [49] Montreuil, B. (2011). Towards a Physical Internet: Meeting the Global Logistics Sustainability Grand Challenge. CIRRELT. En ligne. https://www.cirrelt.ca/documentstravail/cirrelt-2011-03.pdf
- [50] Hakimi, D., Montreuil, B., Sarraj, R., Ballot, E., Pan, S. (2012). Simulating a physical internet enabled mobility web: the case of mass distribution in France. 9th International Conference on Modeling, Optimization & Simulation MOSIM'12, Bordeaux, France. En ligne. https://hal.archives-ouvertes.fr/hal-00728584/document

- [51] Statistique Canada. (2017). Montréal [Région métropolitaine de recensement] : Profil du recensement, Recensement de 2016, produit n° 98-316-X2016001 au catalogue de Statistique Canada. En ligne.

 https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=F
- [52] Statistique Canada. (2017). Québec [Région métropolitaine de recensement] : Profil du recensement, Recensement de 2016, produit n° 98-316-X2016001 au catalogue de Statistique Canada. En ligne.

 https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=F
- [53] Statistique Canada. (2020). Tableau 23-10-0142-01 Origine et destination des marchandises transportées, Cadre d'analyse du fret canadien. DOI: https://doi.org/10.25318/2310014201-fra
- [54] Gouvernement du Québec. (2022). Normales climatiques du Québec 1981-2010. En ligne. https://www.environnement.gouv.qc.ca/climat/normales/index.asp